203 research outputs found

    Pluripotent human stem cells: Standing on the shoulders of giants

    Get PDF
    The advent of human pluripotent stem cells, with the first derivation of human embryonic stem cells in 1998, and of human induced pluripotent stem cells in 2007, has ushered in an era of considerable excitement about the prospects of using these cells to develop new opportunities for healthcare, from their potential for regenerative medicine to their use as tools for studying the cellular basis of many diseases and the discovery of new drugs. But as with the flowering of many new areas in science, the biology of human pluripotent stem cells has its roots in a long history of, sometimes, less fΓͺted research. In a period when research funding is frequently driven by a desire to meet specific clinical or economic goals, it is salutary to remember that the opportunities offered by human pluripotent stem cells have their origins in curiosity driven research without any of those goals in mind. In this case, that research focused on the relatively rare gonadal cancers known as teratomas, tumors that have fascinated people since antiquity because their sometime grotesque manifestations with haphazard collections of tissues and sometimes recognizable body parts. Although well known to clinical pathologists it was the pioneering work of Leroy Stevens, who first discovered that teratomas occur at a significant rate in the 129 strain of the laboratory mouse and could be produced experimentally, that laid the foundations for our understanding of the biology of these tumors and the central role of the embryonal carcinoma cell, one of the archetypal tumor stem cells

    Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach

    Get PDF
    Background: Several methods have been used to induce somatic cells to re-enter the pluripotent state. Viral transduction of reprogramming genes yields higher efficiency but involves random insertions of viral sequences into the human genome. Although induced pluripotent stem (iPS) cells can be obtained with the removable PiggyBac transposon system or an episomal system, both approaches still use DNA constructs so that resulting cell lines need to be thoroughly analyzed to confirm they are free of harmful genetic modification. Thus a method to change cell fate without using DNA will be very useful in regenerative medicine. Methodology/Principal Findings: In this study, we synthesized mRNAs encoding OCT4, SOX2, cMYC, KLF4 and SV40 large T (LT) and electroporated them into human fibroblast cells. Upon transfection, fibroblasts expressed these factors at levels comparable to, or higher than those in human embryonic stem (ES) cells. Ectopically expressed OCT4 localized to the cell nucleus within 4 hours after mRNA introduction. Transfecting fibroblasts with a mixture of mRNAs encoding all five factors significantly increased the expression of endogenous OCT4, NANOG, DNMT3 beta, REX1 and SALL4. When such transfected fibroblasts were also exposed to several small molecules (valproic acid, BIX01294 and 5'-aza-2'-deoxycytidine) and cultured in human embryonic stem cell (ES) medium they formed small aggregates positive for alkaline phosphatase activity and OCT4 protein within 30 days. Conclusion/Significance: Our results demonstrate that mRNA transfection can be a useful approach to precisely control the protein expression level and short-term expression of reprogramming factors is sufficient to activate pluripotency genes in differentiated cells

    Human pluripotent stem cells : genetic instability or stability?

    Get PDF

    STELLA Facilitates Differentiation of Germ Cell and Endodermal Lineages of Human Embryonic Stem Cells

    Get PDF
    Stella is a developmentally regulated gene highly expressed in mouse embryonic stem (ES) cells and in primordial germ cells (PGCs). In human, the gene encoding the STELLA homologue lies on chromosome 12p, which is frequently amplified in long-term cultured human ES cells. However, the role played by STELLA in human ES cells has not been reported. In the present study, we show that during retinoic acid (RA)-induced differentiation of human ES cells, expression of STELLA follows that of VASA, a marker of germline differentiation. By contrast, human embryonal carcinoma cells express STELLA at a higher level compared with both karyotypically normal and abnormal human ES cell lines. We found that over-expression of STELLA does not interfere with maintenance of the stem cell state of human ES cells, but following retinoic acid induction it leads to up-regulation of germline- and endodermal-associated genes, whereas neural markers PAX6 and NEUROD1 are down-regulated. Further, STELLA over-expression facilitates the differentiation of human ES cells into BE12-positive cells, in which the expression of germline- and endodermal-associated genes is enriched, and suppresses differentiation of the neural lineage. Taken together, this finding suggests a role for STELLA in facilitating germline and endodermal differentiation of human ES cells

    Teratomas produced from human pluripotent stem cells xenografted into immunodeficient mice - A histopathology atlas

    Get PDF
    This atlas illustrates the microscopic features of tumors produced from human pluripotent stem cells (hPSCs) xenografted into immunosuppressed mice, according to the generally accepted protocols for performing this teratoma assay of stem cell pluripotency. Microphotographs depict various hematoxylin and eosin (H&E) stained tissues derived from all three embryonic germ layers (ectoderm, mesoderm and endoderm). The appearance of persistent hPSC in teratomas is also described with special emphasis on the morphogenesis of embryoid bodies and yolk sac components surrounding them. The use of immunohistochemistry for analyzing hPSC-derived teratomas is also illustrated

    A short history of pluripotent stem cells markers

    Get PDF
    The expression of one or more of a small number of molecules, typically cell surface-associated antigens, or transcription factors, is widely used for identifying pluripotent stem cells (PSCs) or for monitoring their differentiation. However, none of these marker molecules are uniquely expressed by PSCs and all are expressed by stem cells that have lost the ability to differentiate. Consequently, none are indicators of pluripotency, per se. Here we summarize the nature and characteristics of several markers that are in wide use, including the cell surface antigens, stage-specific embryonic antigen (SSEA)-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, GCTM2, and the transcription factors POUF5/OCT4, NANOG, and SOX2, highlighting issues that must be considered when interpreting data about their expression on putative PSCs

    Influence of radiative damping on the optical-frequency susceptibility

    Full text link
    Motivated by recent discussions concerning the manner in which damping appears in the electric polarizability, we show that (a) there is a dependence of the nonresonant contribution on the damping and that (b) the damping enters according to the "opposite sign prescription." We also discuss the related question of how the damping rates in the polarizability are related to energy-level decay rates

    Human pluripotent stem cells as tools for high-throughput and high-content screening in drug discovery

    Get PDF
    A significant bottleneck in drug discovery is the lack of suitable models for sensitive, reliable, and rapid assessment of lead molecules in preclinical stages of drug discovery. Human pluripotent stem cells (hPSCs) derived either from early human blastocysts (human embryonic stem cells) or by reprogramming somatic cells to a pluripotent state (human-induced pluripotent stem cells) can be propagated extensively in vitro while retaining the ability to differentiate into any specialized cell type within the body. In this review, we discuss how these unique features of hPSCs could offer a way of producing relevant in vitro models amenable to high-throughput testing for drug discovery. We summarize recent progress in inducing differentiation of hPSCs to specific cell types, and describe the ongoing efforts in applying hPSCs and their differentiated derivatives in disease modeling, drug discovery, and developmental toxicology. Moreover, we review the applications of high-content imaging assays in detecting the changes in the phenotype of hPSCs and their differentiated progeny. Finally, we highlight challenges that need to be overcome in order for the application of hPSC technology to fully benefit drug discovery

    Acquired genetic and epigenetic variation in human pluripotent stem cells

    Get PDF
    Human pluripotent stem cells (hPSCs) can acquire non-random genomic variation during culture. Some of these changes are common in tumours and confer a selective growth advantage in culture. Additionally, there is evidence that reprogramming of human induced pluripotent stem cells (hiPSCs) introduces mutations. This poses a challenge to both the safety of clinical applications and the reliability of basic research using hPSCs carrying genomic variation. A number of methods are available for monitoring the genomic integrity of hPSCs, and a balance between practicality and sensitivity must be considered in choosing the appropriate methods for each use of hPSCs. Adjusting protocols by which hPSCs are derived and cultured is an evolving process that is important in minimising acquired genomic variation. Assessing genetic variation for its potential impact is becoming increasingly important as techniques to detect genome-wide variation improve

    Acquired genetic changes in human pluripotent stem cells : origins and consequences

    Get PDF
    In the 20 years since human embryonic stem cells, and subsequently induced pluripotent stem cells, were first described, it has become apparent that during long-term culture these cells (collectively referred to as β€˜pluripotent stem cells’ (PSCs)) can acquire genetic changes, which commonly include gains or losses of particular chromosomal regions, or mutations in certain cancer-associated genes, especially TP53. Such changes raise concerns for the safety of PSC-derived cellular therapies for regenerative medicine. Although acquired genetic changes may not be present in a cell line at the start of a research programme, the low sensitivity of current detection methods means that mutations may be difficult to detect if they arise but are present in only a small proportion of the cells. In this Review, we discuss the types of mutations acquired by human PSCs and the mechanisms that lead to their accumulation. Recent work suggests that the underlying mutation rate in PSCs is low, although they also seem to be particularly susceptible to genomic damage. This apparent contradiction can be reconciled by the observations that, in contrast to somatic cells, PSCs are programmed to die in response to genomic damage, which may reflect the requirements of early embryogenesis. Thus, the common genetic variants that are observed are probably rare events that give the cells with a selective growth advantage
    • …
    corecore